

 [image: _images/themis-ml-banner.png]

A fairness-aware machine learning library

themis-ml is an open source machine learning library that implements
several fairness-aware methods that comply with the sklearn API.

Fairness-aware Machine Learning

themis-ml defines discrimination as the preference (bias) for or against a
set of social groups that result in the unfair treatment of its members with
respect to some outcome.

It defines fairness as the opposite of discrimination, and in the context of a
machine learning algorithm, this is measured by the degree to which the
algorithm’s predictions favor one social group over another in relation to an
outcome that holds socioeconomic, political, or legal importance, e.g. the
denial/approval of a loan application.

An algorithm is “fair” depending on how we define fairness, the outcome of
interest, and the socially sensitive attributes that relate to potentially
discriminatory circumstances. For example, if we consider fairness as
statistical parity, a fair algorithm is one in which the proportion of approved
loans among minorities is equal to the proportion of approved loans among white
people.

However, there are many other ways to define and operationalize fairness, and
the purpose of themis-ml is to attempt to provide an interface that gives
users with access to formalized definitions of fairness and discrimination
described in the the machine learning and statistics literature. Check out this
paper [https://github.com/cosmicBboy/themis-ml/blob/master/paper/main.pdf]
for more details.

Install

You can install themis-ml with conda or pip. Currently only
Python 2.7 and 3.6 are supported.

conda
conda install -c cosmicbboy themis-ml

If you install with pip, you’ll need to install scikit-learn, numpy, and pandas
with either pip or conda. Version requirements:

	numpy (>= 1.9.0)

	scikit-learn (>= 0.19.1)

	pandas (>= 0.22.0)

pip
pip install themis-ml

Contents

	API
	Datasets

	Metrics

	Preprocessing

	Linear Models

	Postprocessing

	Meta-estimators

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

API

	Datasets

	Metrics

	Preprocessing

	Linear Models

	Postprocessing

	Meta-estimators

	Utilities

Datasets

	
themis_ml.datasets.german_credit(raw=False)

	Load German Credit Dataset.

The target variable is “credit_risk”, where 0 = bad and 1 = good

	Parameters

	raw (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, return raw data, otherwise return model-ready
data. The model-ready data has columns arranged in the order of:

	numeric features.

	ordered categorical features.

	binary features.

	non-ordered categorical features.

	target.

Note: Raw data does not have this ordering, nor does it have dummified
categorical variables.

	Returns

	DataFrame of raw or model-ready data.

	
themis_ml.datasets.census_income(raw=False)

	Load Census Income Data from 1994 - 1995.

The target variable is “income_gt_50k” (income above $50,000), where 0 is
below and 1 is above.

	Parameters

	raw (bool [https://docs.python.org/2/library/functions.html#bool]) – if True, return raw data, otherwise return model-ready
data. The model-ready data has columns arranged in the the order of:

	numeric features.

	ordered categorical features.

	binary features.

	non-ordered categorical features.

	target.

	Returns

	DataFrame of raw or model-ready data.

Metrics

Module for Fairness-aware scoring metrics.

	
themis_ml.metrics.abs_mean_difference_delta(y, pred, s)

	Compute lift in mean difference between y and pred.

This measure represents the delta between absolute mean difference score
in true y and predicted y. Values are in the range [0, 1] where the higher
the value, the better. Note that this takes into account the reverse
discrimintion case.

	Parameters

	
	y (numpy.array) – shape (n,) containing binary target variable, where
1 is the desireable outcome and 0 is the undesireable outcome.

	pred (numpy.array) – shape (n,) containing binary predicted target,
where 1 is the desireable outcome and 0 is the undesireable outcome.

	s (numpy.array) – shape (n,) containing binary protected class
variable where 0 is the advantaged groupd and 1 is the disadvantaged
group.

	Returns

	absolute difference in mean difference score between true y and
predicted y

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	
themis_ml.metrics.abs_normalized_mean_difference_delta(y, pred, s)

	Compute lift in normalized mean difference between y and pred.

This measure represents the delta between absolute normalized mean
difference score in true y and predicted y. Values are in the range [0, 1]
where the higher the value, the better. Note that this takes into account
the reverse discrimintion case. Also note that the normalized mean
difference score for predicted y’s uses the true target for the
normalization factor.

	Parameters

	
	y (numpy.array) – shape (n,) containing binary target variable, where
1 is the desireable outcome and 0 is the undesireable outcome.

	pred (numpy.array) – shape (n,) containing binary predicted target,
where 1 is the desireable outcome and 0 is the undesireable outcome.

	s (numpy.array) – shape (n,) containing binary protected class
variable where 0 is the advantaged groupd and 1 is the disadvantaged
group.

	Returns

	absolute difference in mean difference score between true y and
predicted y

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	
themis_ml.metrics.mean_difference(y, s)

	Compute the mean difference in y with respect to protected class s.

In the binary target case, the mean difference metric measures the
difference in the following conditional probabilities:

mean_difference = p(y+ | s0) - p(y+ | s1)

In the continuous target case, the mean difference metric measures the
difference in the expected value of y conditioned on the protected class:

mean_difference = E(y+ | s0) - E(y+ | s1)

Where y+ is the desireable outcome, s0 is the advantaged group, and
s1 is the disadvantaged group.

Reference:
Zliobaite, I. (2015). A survey on measuring indirect discrimination in
machine learning. arXiv preprint arXiv:1511.00148.

	Parameters

	
	y (numpy.array) – shape (n,) containing binary target variable, where
1 is the desireable outcome and 0 is the undesireable outcome.

	s (numpy.array) – shape (n,) containing binary protected class
variable where 0 is the advantaged groupd and 1 is the disadvantaged
group.

	Returns

	mean difference between advantaged group and disadvantaged group
with lower and uppoer confidence interval bounds.

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple][float [https://docs.python.org/2/library/functions.html#float]]

	
themis_ml.metrics.mean_differences_ci(y, s, ci=0.975)

	Calculate the mean difference and confidence interval.

	Parameters

	
	y (array-like) – shape (n,) containing binary target variable, where
1 is the desireable outcome and 0 is the undesireable outcome.

	s (array-like) – shape (n,) containing binary protected class
variable where 0 is the advantaged group and 1 is the disadvantaged
group.

	ci (float [https://docs.python.org/2/library/functions.html#float]) – % confidence interval to compute. Default: 97.5% to
compute 95% two-sided t-statistic associated with degrees of freedom.

	Returns

	mean difference between advantaged group and disadvantaged group
with error margin.

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple][float [https://docs.python.org/2/library/functions.html#float]]

	
themis_ml.metrics.normalized_mean_difference(y, s, norm_y=None, ci=0.975)

	Compute normalized mean difference in y with respect to s.

Same the mean difference score, except the score takes into account the
maximum possible discrimination at a given positive outcome rate. Is only
defined when y and s are both binary variables.

normalized_mean_difference = mean_difference / d_max

where d_max = min((p(y+) / p(s0)), ((p(y-) / p(s1)))

The d_max normalization term denotes the smaller value of either the
ratio of positive labels and advantaged observations or the ratio of
negative labels and disadvantaged observations.

Therefore the normalized mean difference will report a higher score than
mean difference in two cases:
- if there are fewer positive examples than there are advantaged

observations.

	if there are fewer negative examples than there are disadvantaged
observations.

Reference:
Zliobaite, I. (2015). A survey on measuring indirect discrimination in
machine learning. arXiv preprint arXiv:1511.00148.

	Parameters

	
	y (numpy.array) – shape (n,) containing binary target variable, where
1 is the desireable outcome and 0 is the undesireable outcome.

	s (numpy.array) – shape (n,) containing binary protected class
variable where 0 is the advantaged groupd and 1 is the disadvantaged
group.

	norm_y (numpy.array|None) – shape (n,) or None. If provided, this
array is used to compute the normalization factor d_max.

	Returns

	mean difference between advantaged group and disadvantaged group
with lower and upper confidence interval bounds

	Return type

	tuple [https://docs.python.org/2/library/functions.html#tuple](float [https://docs.python.org/2/library/functions.html#float])

Preprocessing

Linear Models

	
class themis_ml.linear_model.LinearACFClassifier(target_estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False), continuous_estimator=LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False), binary_estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False), binary_residual_type='pearson')

	
	
fit(X, y, s)

	Fit model.

	
predict(X, s)

	Generate predicted labels.

	
predict_proba(X, s)

	Generate predicted probabilities.

Postprocessing

Meta-estimators

Module for Fairness-aware base estimators.

Utilities

Utility functions for computing useful statistics.

	
themis_ml.stats_utils.deviance_residuals(y, pred)

	Compute Deviance residuals.

Reference:
https://web.as.uky.edu/statistics/users/pbreheny/760/S11/notes/4-12.pdf

Formula:
d = sign * sqrt(-2 * {y * log(p) + (1 - y) * log(1 - p)})
- where sign is -1 if y = 1 and 1 if y = 0
- y is the true label
- p is the predicted probability

	Parameters

	
	y (array-like[int [https://docs.python.org/2/library/functions.html#int]]) – target labels. 1 is positive label, 0 is negative
label

	pred (array-like[float [https://docs.python.org/2/library/functions.html#float]]) – predicted labels.

	Returns

	deviance residual.

	Return type

	array-like[float [https://docs.python.org/2/library/functions.html#float]]

	
themis_ml.stats_utils.pearson_residuals(y, pred)

	Compute Pearson residuals.

Reference:
https://web.as.uky.edu/statistics/users/pbreheny/760/S11/notes/4-12.pdf

	Parameters

	
	y (array-like[int [https://docs.python.org/2/library/functions.html#int]]) – target labels. 1 is positive label, 0 is negative
label

	pred (array-like[float [https://docs.python.org/2/library/functions.html#float]]) – predicted labels.

	Returns

	pearson residual.

	Return type

	array-like[float [https://docs.python.org/2/library/functions.html#float]]

Utility functions for doing checks.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 themis_ml	

 	
 	
 themis_ml.checks	

 	
 	
 themis_ml.datasets	

 	
 	
 themis_ml.meta_estimators	

 	
 	
 themis_ml.metrics	

 	
 	
 themis_ml.postprocessing	

 	
 	
 themis_ml.preprocessing	

 	
 	
 themis_ml.stats_utils	

Index

 A
 | C
 | D
 | F
 | G
 | L
 | M
 | N
 | P
 | T

A

 	
 	abs_mean_difference_delta() (in module themis_ml.metrics)

 	
 	abs_normalized_mean_difference_delta() (in module themis_ml.metrics)

C

 	
 	census_income() (in module themis_ml.datasets)

D

 	
 	deviance_residuals() (in module themis_ml.stats_utils)

F

 	
 	fit() (themis_ml.linear_model.LinearACFClassifier method)

G

 	
 	german_credit() (in module themis_ml.datasets)

L

 	
 	LinearACFClassifier (class in themis_ml.linear_model)

M

 	
 	mean_difference() (in module themis_ml.metrics)

 	
 	mean_differences_ci() (in module themis_ml.metrics)

N

 	
 	normalized_mean_difference() (in module themis_ml.metrics)

P

 	
 	pearson_residuals() (in module themis_ml.stats_utils)

 	
 	predict() (themis_ml.linear_model.LinearACFClassifier method)

 	predict_proba() (themis_ml.linear_model.LinearACFClassifier method)

T

 	
 	themis_ml.checks (module)

 	themis_ml.datasets (module)

 	themis_ml.meta_estimators (module)

 	
 	themis_ml.metrics (module)

 	themis_ml.postprocessing (module)

 	themis_ml.preprocessing (module)

 	themis_ml.stats_utils (module)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 A fairness-aware machine learning library

 		
 API

 		
 Datasets

 		
 Metrics

 		
 Preprocessing

 		
 Linear Models

 		
 Postprocessing

 		
 Meta-estimators

 		
 Utilities

_static/down.png

_static/comment.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/themis-ml-banner.png
® themis-ml

_static/comment-bright.png

_images/themis-ml-banner.png
® themis-ml

_static/ajax-loader.gif

_static/comment-close.png

